Putting Volunteer Monitors in the Driver's Seat: Developing a Cyanobacteria Research Plan Around Their Needs

Nancy Leland^{1,2}, Karen Malkus-Benjamin^{3,4}, Bryan Horsley⁵, Jo Ann Muramoto⁵, James Haney²

¹Lim-Tex ²University of New Hampshire, Center for Freshwater Biology and Ecotoxicology ³Health Department, Town of Barnstable, MA ⁴Brewster Ponds Coalition ⁵Association to Preserve Cape Cod

Proverbial Jim Haney quotes

"All monitoring is local"

"Keep it simple, we have an army to train"

"It's their data, show them how to use it"

Citizen Scientists

Advocates, local staff, esearchers

Equipment

<50 μm, WLW, BFC isolates

Methods

Fluorometry: Single Freeze-Thaw (SFT)

ELISA analysis: Speed-vac (2-20X)

Our working hypotheses:

1) Population (size) structure integrates processes and constraints

Composition

2) Temporal changes can determine and predict success

Dominance

3) Changes in size structure mediates bloom initiation and risk associated with toxins

Growth

This is where we are Composition and Dominance

This is where we're going Composition, Dominance and Growth

Resilience Indicators (RI) or Growth Rate (GR) Sharp increase = Critical transitions

Growth rate

Resilience Indicator

$$\mu d^{-1} = \ln (PC_2) - \ln (PC_1)/t_2 - t_1$$
 RI = Std. dev. 28 day PC

What about toxicity?

Composition **Toxic genus:** Microcystis spp. Mixed assemblage Low-toxic genus: Dolichospermum spp. Dominance: %Mic or BFC PC/Chl-a ratio Growth: BFC PC (μ d⁻¹) > 0.02 d⁻¹

Table 2. Cyanobacterial biomass growth rates (GR) and doubling times (DT).

Growth rate	Doubling time
(μ d ⁻¹)	(days)
0.02	34
0.05	14
0.07	10
0.1	7
0.2	3

DT = 0.693/GR

Table 1. Regressions between cyanobacterial biomass and total microcystins in *Microcystis* spp. dominated systems, where Log Y = a + b * Log X where Y = Log MC (ng/L) and X = $Log PC (\mu g/L)$

Microcystis spp. dominated lakes					
	a	b	Adj. r ²	n	p
Silver Lake	1.341	1.148	0.942	39	< 0.001
Gooseberry Pond	1.899	0.923	0.791	16	< 0.001

Cyanobacterial populations

Regression coefficients between cyanobacterial population size structure, biomass and total microcystins where Log Z = a + b*Log X + c*Log Y where Z = Log MC (ng/L), X = Log % Mic and Y = Log PC (μ g/L)

a	b	c	Adj. r ²	n	p
-0.123	0.939	0.787	0.780	196	< 0.001

Table 3 Cyanobacterial population size structure, growth rates and toxin production measured using cyanobacterial biomass as phycocyanin. Values as mean of observed positive growth rates and toxin production.

Community Composition
Microcystis spp.
Mixed assemblage
Dolichospermum spp.

_	
ſ	Growth
	category*
	Low
	Med
	High
	Low
	Med
	High
	Low
	Med
	High

WLW				
MC/PC (ng				
μg ⁻¹)				
24.0				
37.7				
34.6				
18.2				
9.9				
10.4				
0.31				
0.75				
0.44				

Sample Type

BFC				
MC/PC				
$(ng \mu g^{-1})$				
47.72				
53.90				
69.64				
15.24				
15.87				
14.81				
0.37				
0.42				
0.17				

Low = $< 0.02 \, d^{-1}$, Medium = $0.02 - 0.07 \, d^{-1}$, High = $> 0.07 \, d^{-1*}$

^{*} Orr & Jones et al (1998), Kurmayer et al (2003), Chan et al (2004), Briand et al (2012), Chang et al (2012).

Project line-up for Summer 2019

Local decisions for cyanobacteria: Measures of success

Exposure pathways

Impacts to endangered species

